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Abstract. The harmonic magnon modes in a Heisenberg ferromagnetic chain in a random
weak field are studied. The Lyapunov exponent for the uniform (k = 0) mode is computed
using the coherent potential approximation (CPA) in the weak-disorder limit. The CPA results
are compared with the numerical and weak-disorder expansions of various random systems. We
have found that the inverse localization length and the integrated density of states have anomalous
power law behaviour as reported earlier. The CPA also reproduces the dispersion law for the
same system, calculated by Pimentel and Stinchcombe using the real space renormalization
scaling technique. A brief comment is also made for the uniform weak-field case.

1. Introduction

We have recently worked on the dynamics of one-dimensional spin glasses for binary
and continuous distributions of the exchange interactions in the zero- and high-field
limits using the coherent exchange approximation (CEA) [1] (a version of the coherent
potential approximation (CPA); see the appendix). We have found that the CEA reproduces
successfully the numerical and analytical results, particularly the anomalous power law
behaviour of the dynamical quantities in the low-frequency regime. In this paper, a
ferromagnetic Heisenberg chain in a random weak field is investigated using the CPA.
The random field model is simpler than the spin glass model but they share complicated
features such as frustration. This magnetic system is capable of capturing the fundamental
physics behind a rich class of experimentally realizable random systems such as binary fluid
mixtures in disordered porous media and some disordered Ising antiferromagnetics in an
external field [2]. The behaviour of the random field system is determined by the battle
between ferromagnetic exchange interactionJ and local fieldhi . In low dimensions, the
ferromagnetic order is unstable against the formation of overturned large-spin droplets [2],
but, for a weak field, a large reversed domain (opposing ferromagnetic order) appears with
a small probability [3]. Thus the ground state has an effective ferromagnetic order over
length scales longer than the harmonic magnon wavelength [3], that isk−1 < 2J/h (for
weak fieldJ/h � 1, this criterion clearly holds [3]).

2. The CPA results for random field

We start with the linearized equation of motion for spin operatorS+ (equation (5) of [3])

(2 + ξnh − w)S+
n = S+

n−1 + S+
n+1 (1)
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wherew and h are the magnon energy and strength of the random field (in units ofJ )
respectively, andxn is a random quantity taking(±1) with equal probability. Theξnh

part in equation (1) can be associated with the potential fluctuations of the disordered alloy
systems; hence, the CPA can be used. The CPA reduces the random medium to an effective
medium characterized by a coherent fieldhc(w) which will be determined self-consistently
by setting the configurationally averaged scattering matrix to zero [4] and the resulting
self-consistent equation takes the form (see the appendix)

h − hc(w)

1 − (h − hc(w))G(w − hc)
− h + hc(w)

1 + (h + hc(w))G(w − hc)
= 0 (2a)

−hc(w) + (h2 − h2
c(w))G(w − hc) = 0 (2b)

where

G(w, hc) = [(w − hc)(w − hc − 4)]−1/2 (3)

is the configurationally averaged Green function in one dimension [5] (however
equations (2a) and (2b) are valid for any dimension). For vanishingly smallw hc(w)

is not a function ofw. For relatively weak field and smallw equation (2b) reduces to the
well known limit of weak scattering [4]

hc
∼= h2G(−hc) = h2(4hc)

−1/2. (4)

This can easily be solved and the complex solution (physically meaningful [5] since the
real and imaginary parts of the solution are proportional to the Lyapunov exponent and the
integrated density of states, respectively) is

hc
∼= (e2π ih2/2)2/3. (5)

As discussed in [4], the equation (2) is obtained after the arithmetic average is performed;
however it is not the arithmetic average that is representative of the ensemble in one
dimension but rather the geometric average. Moreover, the geometric averaged coherent
field hG

c is related tohc of equation (2) in that

hG
c ≈ 1

2hc (6)

for the weak-field limit [4].
The dynamical properties of a disordered chain can be obtained fruitfully from the

studies of the complex Lyapunov exponentγ [6]. Thouless [7] established that Reγ is
the inverse localization length and−(Im γ )/π is the integrated density of states. For our
context, the Lyapunov exponent is given by [7, 1]

γ (w − hG
c ) =

∫
G(w − hG

c ) dw. (7)

Using equations (5) and (7), the complex Lyapunov exponents for the uniform(k = 0)

harmonic magnon mode can be obtained

γ (h) = −(hG
c )1/2 = 2−5/6 exp(5π i/3)h2/3 (8)

whose real and imaginary parts are given by

Reγ = 2−5/6 cos(5π/3)h2/3 (9)

− Im γ

π
= π−12−5/6 sin(5π/3)h2/3. (10)
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To compare the CPA results with the disordered tight-binding chain and numerical simulation
results, we should, first, use the analogy given in [8] and then identify the random potential.
Equation (1) is analogous to the tight-binding chain [8, 1]

(E − λVn)ψn = ψn+1 + ψn−1 (11)

if E = 2, w = 0 and random potentialλVn = −ξnh. The integrated density of states and
inverse localization length are proportional to〈λ2V 2〉1/3 for even distribution of random
potential [6]. To compare the results, we set Reγ = Ahx and −(Im γ )/π = Bhx ; A, B

and x are given in table 1 where one can see a good agreement between the CPA results
and the numerical results [8] and those of Derrida and Gardner [6].

Table 1. The integrated density of states and the inverse localization length obtained by various
methods.

Numerical results [1, 8] Derrida and Gardner [6] CPA CEA [1]

A 0.162 0.159 0.155 0.164
B 0.285 0.289 0.281 0.297
x 2/3 2/3 2/3 2/3

For small magnon damping, as is the case for smallk andh, we can obtain the magnon
dispersion relation from the poles of thek dependent Green functions:

wk = hG
c + k2 ∼ {(h/k3/2)4/3 + 1}k2 (12)

and

wk ∼
{

k2 for hk−3/2 � 1

h4/3 for hk−3/2 � 1.
(13)

This dispersion relation was first obtained by Pimentel and Stinchcombe [3] using the real
space renormalization technique. Equation (13) gives the usual ferromagnetic dispersion law
for very smallh, and for the other limit the dynamics are governed by a nontrivial power
law of the field. Moreover, the cross-over can be observed [3] sincek−1 ∼ h−2/3 < h−1,
the criteria for the existence of magnons, are fulfilled.

3. A spin glass in uniform field

Here we consider the case whereh is weak but nonrandom and the exchange interactions
are random and equally distributed(±J ). This is a spin glass system and the equation of
motion is given by [3]

[2 − ξn(w − h)]un = un+1 + un−1 (14)

whereun = ξnS
+
n and〈SZ

n 〉 = ξn (thus the ground state is random). Forw = 0, the equations
of motion for the random field and the spin glass are equivalent. Since the disorder is in
the exchange interactions we can use the CEA. Equation (14) has the same form as the
spin glass in the high-field case; the CEA results of [1] can be used. They are shown in
table 1 (however, notice that the random potential for equation (14) isξn(w − h) and the
coefficientsA (or B) (w −h)x). The dispersion law for long-wavelength excitations can be
written as

w − h ∼ Jc(w − h)k2 (15)
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in which the coherent exchange [1]Jc(w − h) ∼ [−(w − h)]−1/3 for low w − h (see the
appendix). It takes the form

wk ∼
{

k3/2 for hk−3/2 � 1

h for hk−3/2 � 1.
(16)

For the small-h limit, the zero-field spin glass dispersion relation is recovered [3, 8, 1].

4. Summary and conclusion

In this paper we have discussed a ferromagnetic chain in a random weak field using the
CPA. We found that the CPA results, particularly the anomalous power law behaviour, are in
good agreement with the numerical and exact perturbation calculations in the weak-disorder
limit. A brief comment on spin glasses in a small uniform field is also made. We are in
the process of calculating the full spectrum for one and higher dimensions.
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Appendix

The CPA was originally developed to account for diagonal disorder of the electronic problem
[9]. The method was also generalized to treat random magnetic systems [9]. Let us consider
the Heisenberg Hamiltonian in a magnetic field

H = −
∑

n

Jn,n+1SnSn+1 −
∑

n

hnSn (A1)

whereS, Jn,n+1 andhn are the spin, exchange integral and site dependent magnetic field,
respectively. First consider that the exchange integral is uniform but the field is site
dependent and random; then the second part of equation (A1) acts like a diagonal disorder
of the electronic problem. We then can employ the CPA whose configurationally averaged
scattering matrix is of the form

〈T 〉 =
∫

dh p(h)
(h − hc(w))

1 − (h − hc(w))G(w − hc)
(A2)

wherep(h) is the distributions of the random field. Second consider that the field is uniform
but the exchange integral is random. This is an off-diagonal (bond) disorder and, to account
for this, a modified version of the CPA to the bond problem where the coherent potential is
replaced by a coherent exchange was developed [10]. For this case, the configurationally
averaged scattering matrix is given by

〈T 〉 =
∫

dJ p(J )
(J − Jc(w − h))

1 − (J − Jc(w − h))F (w − h, Jc)
(A3)

wherep(J ) is the distributions of the exchange integrals andF(w − h, Jc) = −1/Jc +
[(w − h)/Jc]G. In this paper only symmetric distributions of the field and the exchange
integral are considered andp(x) = 1

2[δ(x − xc) + δ(x − xc)] wherex representsh or J .
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